Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co-Cr-Mo-(Cu) ultrafine eutectic alloys
نویسندگان
چکیده
In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition.
منابع مشابه
Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite
The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain ...
متن کاملEffect of Deformation Temperature on the Mechanical Behavior of a New TRIP/TWIP Steel Containing 21% Manganese
In recent years, TRIP/TWIP steels have been the focus of great attention thanks due to their excellent tensile strength-ductility combination. The compression tests were performed at different temperatures from 25 to1000°C to study the mechanical behavior of advanced austenitic steel with 21% manganese plus bearing Ti. The results indicated that the plastic deformation is controlled by deformat...
متن کاملInvestigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined TWIP and TRIP effects
As expected from the alloy design procedure, combined Twinning Induced Plasticity (TWIP) and Transformation Induced Plasticity (TRIP) effects are activated in a metastable β Ti-12(wt.%)Mo alloy. In-situ Synchrotron X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) observations were carried out to investigate the deformation mechanisms an...
متن کاملInterstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys
High-entropy alloys (HEAs) consisting of multiple principle elements provide an avenue for realizing exceptional mechanical, physical and chemical properties. We report a novel strategy for designing a new class of HEAs incorporating the additional interstitial element carbon. This results in joint activation of twinning- and transformation-induced plasticity (TWIP and TRIP) by tuning the matri...
متن کاملThe Effect of Deformation Temperature on the Mechanical Properties and Microstructural Evolutions of High Manganese TWIP Steel
In this study, the effect of tensile test temperature (148 to 673 K) on the microstructural evolutions and the mechanical properties of high manganese twinning induced plasticity (TWIP) steel with the chemical composition of Fe- 31Mn-3Al-3Si (wt. %) was investigated. XRD, SEM and TEM were used to study the microstructural evolutions. Stacking fault energy (SFE) of the alloy was also calculated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017